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RELAXATION METHODS APPLIED TO ENGINEERING
PROBLEMS

VIITA. PROBLEMS RELATING TO LARGE TRANSVERSE
DISPLACEMENTS OF THIN ELASTIC PLATES

By J. R. GREEN, D.PuiL. anp R. V. SOUTHWELL, F.R.S.

a
A
A
I~
A B

(Recetved 16 March 1943)

Small transverse displacements of a flat elastic plate are governed by a single linear equation,
but large displacements entail stretching of the middle surface and consequent tensions, which
interacting with the curvatures (i.e. by ‘membrane effect’) introduce non-linear terms into
the conditions of equilibrium and so make those equations no longer independent. The
second-order terms were formulated by von Karman in 1910, but the amended (‘large
deflexion’) equations have been solved only in a few cases, and then with considerable
difficulty.

In this paper four examples are treated approximately by a technique based on relaxation
methods. The first and second are relatively simple problems which have been solved exactly
and so serve as test cases, viz. (a) a circular plate, with clamped edge, which sustains a uniform
transverse pressure and (4) a circular plate, with ‘ simply supported ’ edge, which buckles with
radial symmetry under uniform edge thrust. The third and fourth examples present great
difficulties to orthodox analysis: they are (¢) a square plate, sustaining uniform transverse
pressure, of which the edges are clamped, (d) a square plate buckled by actions which, clamping
its edges, tend initially to induce a state of uniform shear.
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INTRODUCTION

1. Theclassical theory of flexurefor a thin elastic plate relates the transverse deflexion
(w) of the middle surface with the surface intensity (Z) of transverse loading by the

equation
DVt = Z, (1)
. . ) e 2 ER3
4 in which D stands for the ‘flexural rigidity 37 g2 * and
< -
- 2 92
e 4 7
< Vi gt g (2)
=
2 3 It is known that the theory has restricted application; for on the one hand its basic
25 5 assumptions can be questioned unless the plate is thin, and on the other it neglects an
E O effect which must be sensible when w has values comparable with the thickness. This
»

is the ‘membrane effect’ of curvature, whereby tension or compression in the middle
surface tends to oppose or to reinforce Z. It is negligible when w is very small, provided
that no stresses act initially in the plane of the middle surface; but even so it operates

* J denotes the half-thickness of the plate, £ is Young’s modulus, ¢ is Poisson’s ratio. The notation
of this paper follows that of Parts VII A and VIIB of the series.
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540 J. R. GREEN AND R. V. SOUTHWELL ON RELAXATION

when w is large, because stretching of that surface is a necessary consequence of trans-
verse deflexion. Itentails great difficulty in analysis, whether the problem be concerned
with equilibrium or with elastic stability.

Basic THEORY. (1) PROBLEMS OF STATIC EQUILIBRIUM

2. von Karman (1910) was the first to formulate these statements mathematically.
Suppose in the first place that w is nof accompanied by displacements «, v in the middle
surface. Then to a first approximation (i.e. with neglect of terms of the third and higher
orders in w and its derivatives) the sides and diagonals of an initially square element
ABCD of the middle surface become (cf. figure 1)

1 (0w\? 10w Jw\?
AB — CD — L{l +§(5§) } AC — LJQ{I +1(%+9§) }
1 (0w\? 10w Jw\?
AD — BC — L{l +§(@) } BD — LJ2{1 +1(7ﬁ-0—y) }
so the strains in the middle surface at the point considered are (to the same approxi-
mation)
S 1 P Y] S 1
= o\ox) ’ eyy_Q(@ » ST Gx oy
) c
y,v
A 8
3w
x,u
Ficure 1

The strains due to « and » have their usual expressions, and manifestly can be added.
Consequently under conditions of plane stress (Z,, Z, and Z, zero everywhere) we have

du 1 (0w\? 1

0—x+§(ﬂ) = tw = (& =0T,

dv 1 [0w\? 1

A0 - | .
du dv\ dwiw  2(1+0)

(a—y‘—Fa—x) 3;0—y~€xy— i Xy,

from which # and » may be eliminated to obtain a relation between w and X, Y, s Xye
These last are the additional stresses due to large deflexion.
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METHODS APPLIED TO ENGINEERING PROBLEMS 541
When no force is operative in the direction of x or 7, the equations of equilibrium are
6Xx X, oX, oY,
2
SO we may write X, oy Y, = A _ % (5)

o Lo &= ongyp
where y is ¢ Airy’s stress function’. Then the result of eliminating  and v is
iy — E{( a"; g’y)z_%ii;’ %;ig} (6)
which—in conjunction with boundary conditions derived from (5)—would serve to
determine y if w were known. It reduces to the customary biharmonic equation

Viy =0 (7)
when terms of the second order in w are neglected. '

3. When such neglect is not permissible, equation (1) must be modified to take
account of X,, ¥, X,. The corresponding stress resultants are (2 denoting the thickness:

cf. footnote to §1)

T,=2h.X, T,=2h.Y, S,=2hX, (8)
and they contribute an effective transverse loading
0 ow\ 0 ow\ 0 dw\ 0 Jw
5T 0x)+0y(Ty (?y)+0x(8"y 0y>+3y (S %) (9)

to the right-hand side of (1). Having regard to (4) and (5), we deduce that (1) must
be replaced by

Viw (10)

=D 2}z+(9y2 2 T ok ay? L oxay dxdy )’

which—in conjunction with the boundary conditions imposed on w—would serve to
determine w if y were known.

_2h[Z % *w 9%y 0*w 0% 02w]

4. In fact neither y nor w is known initially, so both must be deduced from (6)
and (10) combined with the imposed boundary conditions. These are von Karman’s
equations (§2).

When the boundary values of u and v are specified, introduction of y is less convenient.
Instead, by substitution for X,, ¥,, X, in (4) from (3), we can derive two equations to
replace (6), as under:

04 1—oo, 10 ((0w)? ow\3  1—odw g,
ﬂ+ﬁ‘&v“+éa;{(a‘;) +("a‘y‘)}+1+oé?cv =0
04 1—oo, 100w\ ow\y 1—odwg,
FPRR el vraallae) o) e ay V=0 ()
(AEQE—F—&—?-}).
x 0y

66-2
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542 J. R. GREEN AND R. V. SOUTHWELL ON RELAXATION

These, in conjunction with the boundary conditions, would serve to determine » and
v if w were known. When terms of the second order in w are neglected they reduce to
equations (10) of Part VITA, § 6.

Basic THEORY. (2) PROBLEMS OF ELASTIC STABILITY

5. Harder problems are presented by large deflexions as these affect the stability
of flat plating subjected to edge thrusts. Here, when w is infinitesimal, equation (1)
is replaced (Southwell 1941, §497) by

d(p 0w Low\ 0(, 0w ow

DV4w+a—x(Pxﬂ—S@)+a—y(Py@—S%):O, (12)
P, P, denoting the thrusts in the directions Ox, Oy, and § the shearing action, in the
plane of the middle surface. Equation (12) is a first approximation which neglects
the influence of w upon these stress components: on that understanding 7,, F,, S,
define the stress system which acts initially, so their relative intensities are given. Their
absolute intensities, with w, are to be regarded as unknowns, determinable from (12)
combined with specified boundary conditions of restraint; and these (normally) are
such that a solution can be multiplied by an arbitrary factor (P,, P,, S being held
constant) without violation of any governing condition. But transverse deflexion w
will, as in § 2, entail extension and shear of the middle surface, consequently stresses
which will modify the initial stress system P,, F,, S, so as to make (on the whole) for
tension and thereby for stability. A more complete treatment may thus be expected
to indicate that w cannot in fact be so multiplied : higher initial stresses will be required
to maintain deflexions of greater magnitude, and the form of w will therefore alter as

its amplitude is increased.

6. The extensional stresses which result from large deflexions (w) can be deduced
in the manner of §§ 2-3. When edge tractions are specified, they may be expressed by
(5) in terms of a function y which is governed by (6): when « and v are specified on the
boundary, these may be calculated from (11), and from them second derivatives of
x may be deduced in accordance with (3) and (5). The governing equation (12) is now

replaced by
DV4w+£C(anw Sﬁw)+ d (P dw Sﬁw)

ax S ay) Fag\Bvay =S
_ d (*xdw  I* dw\ 9 (P*ydw I 010)]
*2’1[%(@‘2?7;*07@@)*@(%%“*‘*axaya; ) (13)

Z being zero and P, P, S denoting initial stresses as in §5. Because P, P, S satisfy

x> Ty
the equations

d d d d
Mﬁ;}Px+@S:O’ B}S—@Py:O, (14}
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METHODS APPLIED TO ENGINEERING PROBLEMS 543

a form equivalent to (13) is

Pw (. 0% Pw (. 0% 0w 0%y
4
DVi = 2(2;10 X P)+a 2( bk Py) 8x0y(2h3x0y S) (15)

We have to solve (13) or (15) in conjunction with (6) or (11), thereby determining
both the mode of distortion (w) and the intensity of the action (£, F,, §) which is
required to maintain it.

RELAXATION METHODS APPLIED TO SIMPLE EXAMPLES.
(1) AN EXAMPLE OF STATIC EQUILIBRIUM

7. Our treatment of the problems thus presented is best explained in relation to
simple examples. Both classes are exemplified by a circular plate which distorts into
a solid of revolution, first on account of transverse pressure and secondly on account of
edge thrust acting in its plane; and for both the computations are specially simple in
that only one independent variable (r) enters into the governing equations.

Way (1934) has dealt at length with a circular plate, uniformly loaded, which at its
edge (r =a) is clamped and also constrained against radial displacement resulting
from tensions in the middle surface. This will serve to illustrate §§ 2—4.

Replacing Cartesian by polar co-ordinates, and suppressing (for symmetry) all
differentials with respect to § in (6), (7) and (10), we may substitute

2 1d( 1d d , d? 02
Prral=ra rg) for Vi g for 072]
(16)
L g g g 2(10Y O
rdr O dy?’ © 0r(r019 ~ Oxdy’
E dw d*w
4 e
Then (6) takes the form Vix e Rl (17)
(7) is unchanged, and (10) takes the form
2h[Z | 1 (dyd*w  dwd*y
4y —= | (A T L T A
Vi = D | 2k r(a’r dr? - dr a’rz):l (18)
V2 having the significance stated in (16). The boundary conditions are
. ldy — 5 d% dw
when 7 = 0: d rr—ﬁﬁ—zﬁ, ?1;—0,
. _Eu ~ d% ody dw
when r = a: 0_7—00—0 (el R 7]',;__0,
i.e. %,%= 0 when =0 and when r=aq,
d(ld d(ld od (19)
Lay) _ _ X) Tax _ -
dr(rz) 0 when r =0, ra’(ra’r+ ; a’r_o when 7= a.
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544 J. R. GREEN AND R. V. SOUTHWELL ON RELAXATION

8. If now we write

x for 72, so that 2rdr = dx, ¢ for rfliu = 2x dw ¥ for r

dy dy
dr dx’ 2%

equations (17) and (18) transform respectively into
d a’zgk E d2¢ h(Zx 2
d—x[s et ¢]_o and & [4 {2/# é. zpﬂ —o. (21)

Physical considerations require y, w, and their differentials of all orders to be con-
tinuous at the centre (x = 0) and to be even functions of 7, thus showing ¢ and ¥ to
be of order 72 (= x) at least. The particular boundary conditions (19) of our problem
require that

¢/Jx(=‘fi—l:) =0 when x =0 and when x=az,;

(22)
w_v when x = 0, _1doy when x = a2.
dx % 2 x
ey _ d iy
9. Since 4x-%; 52 = V2y = 0 at the centre of the plate, the conditions at the

centre make the constant of integration zero as regards the first of (21), and a similar
argument leads to a like conclusion in regard to the second. Accordingly we may

replace (21) by . 2 2
o B o #_bIZ G, (22)

dx2 " 8x2 7 dx2 2D 4h+ x2

the factor x being cancellable in view of the symmetry of ¥y and w. From (23), when
terms of the second order in ¢ and ¢ are neglected, we have in virtue of (22)

¥ =0, i.e. y = const., by (20),
¢ = ix(x—az) whence w = Z (x%2—2a%x+const.), by (20)
16D ’ 64D 7 ’ (24)
— Z 2 2\2
— a (d -7 ) ’

since w is required to vanish at the edge (r = ). These are known results.

10. Allowance for the second-order terms in (23) can be made by a process of
continued approximation. Using ¢, ¥, to denote the foregoing ‘small-deflexion
solution’; we express the wanted ‘large-deflexion solution’ in the form

¢=do+¢'s ¥ =vot¥ (#=0), (25)

and we denote by ¢,, ¢, ... and by ¥, ¥,, ..., etc., our successive approximations to ¢’
and ¥’. We derive these from the formulae

a2 E , h
W%n iy (fo+8u-1)% ’@% = 9D (Po+bu1) Vs (26)
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METHODS APPLIED TO ENGINEERING PROBLEMS 545

—which are easily deduced from (23)—(25),—giving 7 the values 1, 2, 3, ... in turn.
Then of the functions on the right of equations (26), the first is known at the start of every
stage, the second when the first of (26) has been solved to determine ¢,

It will be convenient to write

¥ for B,y for §%¢, 4" for 1¢/(hE|D),
(27)
4
so that ¢g stands for %i— A/ (%—E) x" (x"—1).
Then equations (26) reduce to
d2 " £d2 4 n”
dx//2 s //2 <¢ +¢n—1)2 =0, dxrlz n = //2 <¢ ¢n—l) %n (28)

They can be treated by relaxation methods if differentials are replaced by their finite-
difference approximations, viz.

d " d2 " 1 "
(%), by gy vy (), BY p Wl —2it o), (20)

and d@"[dx", d*}" [dx"? by similar expressions.

The forms of the boundary conditions (22) are not altered by the substitutions (27).
Solutions to (28) and (22) must be sought on the basis of a definite value for the para-
meter ¢ hE

Za
S (5s) =4 Gay), (30)

which is a measure of the transverse loading Z, and which is easily shown to be ‘non-
dimensional’.

11. Theformulation of ‘residuals’, and their ‘liquidation’ by a systematic imposition
of ‘displacements’, are routine processes which do not call for detailed description here.
Figure 2 (relating to the case ¢ = 1) exemplifies the progress of the successive approxi-
mations (§10). The accepted curves for ¢” and ¢” are those lettered 4 and B respectively:
having these, we can complete the solution as below.

According to (20) and (27)

[ P

(31)
2/ﬂ //dx//
therefore w/2h = A/ E/z3f A/ Eh3w (say)
at radius 7, when w is assumed to vanish at the line (r = a). The factor
= = 32
A/Eh:‘ A/3 = 0-8559 when o= 0-3. (32)
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546 J. R. GREEN AND R. V. SOUTHWELL ON RELAXATION

Accepting curve 4, figure 2, as sufficiently exact, we deduced the curve of ¢”/x” in
figure 3, and from this, by integration, the variation of w” according to (31) and (32).
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02 J =
" T \ P,
W' oN BASE 0F X" = 1y —K =l \
o o7 o2 a3 o4 05 ¢ o7 0-8 09 10
%" and \x”
Ficure 3

In figure 3, w” is plotted both against x” and against ,/x” (= 7/a); also, for comparison,
w" as derived by ordinary (small deflexion) theory. For the central deflexion w, we have

w,/2h = 0-856 X 0-4614 = 0-3949 )
in this instance, where z = 1 so that '

Zat [ D\E . f

according to (30) and (32).

(33)
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- METHODS APPLIED TO ENGINEERING PROBLEMS 547

12. Other quantities evaluated by Way (§7) were
(I) the bending stress at the centre of the plate,
(IT) the membrane stress at the centre of the plate,
(ITI) the membrane stress at the edge of the plate,

all expressed as multiples of £(24)2/a%. In our notation

(D = 1fh02 ‘1%‘ (1—=0) %lzo - %(g)xw - 4J(3(1 i(72)) (13:2) a? (%)=o

. @ 1 2 "\ 1.00(?) .
so bending stress (I) XE(Q}Z)Z = 1——(7A/(3(1—02))(7)x,,=0 =1 22( ”)x”=0,(

34)
Ldy\, (V¥ 2D(y" )
(1) = (r dr), 0 (;) = ha? ( =0
az 1 "
so membrane stress (1I) x E@h? = 3(1—0?) (%)x”. .
= 0366, x [slope of " —x” curve at origin (x" = 0)]; (35)
1d 2D, ,, 4 E h, .,
(D) = (%) = 5a 0 e =512 e

2
so membrane stress (I1I) XE(;/L)Z =30 _02) (Y")grey = 0:3665(¢")r=y.  (36)

We have made corresponding calculations for x =.1, 2, 3, 4, 5, this range being more
than sufficient to cover all cases having practical importance. Figure 4 (based on
table 1) exhibits the agreement between our results and Way’s.

5 I | I I 30
9
|
/’/ ./
- L R = >
= W — % —
g ro L /// 20
: e
iy -
g - -~ / /'/ 5
Z / e g "
g 05 / -'/ v / // o
5 / 7 W/
s i / /
A 7 P
7 e =
e . A
/4:// )
°0 10 20 30 40 50
3

Ficure 4. Way’s result @, our results O.

Vol. 239. A. 67
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TaBLE 1. WAY’s RESULTS IN OUR NOTATION¥

)7 0-724 1-275 1-818 2-520 3:443 4-67

wo/2h 0-296 0-482 0-637 0-800 0-970 1-152
flexural stress I 0-834 1-327 1-704 2-069 . 2408 2727
membrane stress 11 0-085 0-226 0-392 0-616 0-900 1-258
membrane stress 111 0-041 0-112 0-196 0-311 0-468 0-671

138. The convergence of successive approximations, fairly rapid in figure 2 (i.e. for
4= 1), was found to be slower for higher values of z. This feature was expected, and
to meet it certain modifications were made in the procedure outlined in § 10.

Given ¢,_,, we deduced from (26) the form
of ¢, and thence the form of ¢,. We took its value
for some fixed value of x” (usually 0-5) as a
measure of @, assuming that convergence of ' = Y
this measure would entail approximate con- Y NN
vergence everywhere; and at the end of every 4 oX
cycle we plotted (figure 5) a point P, of which 0
the abscissa was the measure of ¢, _;, the ordinate N
was the measure of ¢,. On the assumptionstated,
if a curve be drawn through successive points of
this kind, convergence (¢,/¢,_; —1) will be at- 2¥
tained when the curve through P, P, ;, P, ., ...
intersects the line ¥ = X in figure 5, and the
point of intersection will define the proper value
which should be given to our measure of ¢,. Accordingly, having assumed an abscissa
and deduced the ordinate of P,, we took this ordinate as the abscissa and deduced the
ordinate of P,. Then, joining P, P, by a straight line cutting the line ¥ = X in @, we
took the abscissa of @ as our third estimate of ¢, and so deduced P; in the same way.
Finally, drawing a curve through P, P, P,, we used this to deduce a point P, so close to
the line Y = X that further approximation was not necessary.

Figure 6 shows the development of a diagram of this kind in relation to the case
where 4 = 4, figure 7 the convergence of the corresponding approximations to ¢ and y.

¢n-: X~

FicUre 5

RELAXATION METHODS APPLIED TO SIMPLE EXAMPLES.
(2) AN EXAMPLE OF ELASTIC STABILITY

14. Friedrichs & Stoker (1941) have solved exactly (by orthodox methods) the case
of a circular plate of radius a, having a ‘simply supported’ edge, which buckles with
radial symmetry under the action of a uniformly distributed edge thrust. This problem
too makes a convenient test case, specially simple in that only one independent variable

(r) is involved.
* Our g = Way’s gu$/2-508 (cf. equation (33)).
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550 J. R. GREEN AND R. V. SOUTHWELL ON RELAXATION

Following Friedrichs & Stoker, we replace (6) and (15) by their equivalents in polar
co-ordinates (r,0), then, ignoring all differentials with respect to ¢, we integrate the
substituted equations to obtain iz our notation®
d oy | 1p{dW\? doy dw( ., dy )
both constants of integration being zero in virtue of the conditions at the centre (r = 0).
P denotes the line intensity of the applied edge thrust, which produces initially a
uniform compressive stress P/2/ in all directions. y defines (cf. § 6) the additional stresses
resulting from the large deflexions.

.. dw dy

2 .
Now writing x for 2, ¢ forr Pt ¥ for r e ]
as in § 8; and x" for ~:2, ¥" for _Q}IZ) v, ¢" for 14 J(/zE/D),J

as in § 10, we reduce (37) to the ‘non-dimensional’ forms

dz%ll

dxllz

"o dz " ” /I_/lxll
+%T2 =0, dxq?Q ¢ (;/rx,,z ), where A = a?P[4D. (39)

These are consistent with (8) and (9) of (F. & S. 1941), in which the edge thrust P is
included in the stress function.

The purpose of our separation of P will be apparent from the account of method
which follows. It means that y must entail no radial stress at the edge (r = a), where
accordingly dy/dr must vanish. On w, at the edge, the condition of simple support

imposes the condition
d*w  odw
ar? " rdr 7

ie. 9}; = (1—0)?—,

¥

so the edge conditions of our problem are

W —o, 2%_,,:(1_0)%, when & = 1. (40)

Expected features of a ‘ large deflexion’ solution

15. The special difficulty of ‘buckling’ problems such as this may be seen by con-
sidering the simplest case of a straight and uniform strut. There the neutral elastic
stability indicated by a treatment on the basis of infinitesimal deflexions is known to be

* Hereafter we shall use (F. & S. 1941) as an abbreviated reference to the cited paper, in which
¢ and R replace x and a as employed here, —p is our ¥/r2, and —gq is our ag/r2.

§ 1 of the paper contains some misprints. In particular ¢ and w have been interchanged in its
equations (4) and (5), (6) and (7); ¥? is omitted from (7) and %% from (9); R-2 has been written for
R? in the definition of its operator I'.
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followed by recovery of stability when the deflexions become large (cf., e.g., Southwell
1941, § 476) : analogously we must expect that the characteristic number 4, in the second
of (39), for small deflexions will have a ‘critical value’ independent of their amplitude,
but for larger deflexions will rise with increasing amplitude, indicating recovery of
stability. We must also (from strut theory) expect the mode to alter progressively as
buckling develops. Below, both expectations are realized.

ESTIMATION OF THE CRITICAL EDGE THRUST. (a) BY ORTHODOX ANALYSIS
16. The ‘critical value’ of A for small deflexions may be derived from (39) with the
second-order terms suppressed, i.e. from

ggﬂ B O d2¢// /1¢I/
dx”2 — Y d "9
The first of these, with (40), shows that ¥” = 0 everywhere. The second (cf., e.g.,
Forsyth 1914, §111) is a form of Riccati’s equation, integrable in the form
¢" = Ax":J{2,/(Ax")} (4 arbitrary) (42)

when (as here) ¢” is required to have a zero value for #” = 0. Substituting in the second
of (40), we find this boundary condition to require that

zJ{(2) +0Ji(z) =0, ie. (1—0)J,(2) =2Jy(z), when z=2/A.  (43)

From tables the first three roots of (43) are found to be (when o = 0-318, the value
assumed in F. & S. 1941)

— 0. (41)

2:0600,, 5393, 8574,
giving as critical values of A (44)
A= }z2 =1-0609,, 7-271, 18-378.

The gravest value gives a?P/D = 4A = 4-2436 according to (39). This agrees with the
value (4-24) given in F. & S. (1941, §1).

ESTIMATION OF THE CRITICAL EDGE THRUST. (b) BY RELAXATION METHODS
17. If the second of (41) had not been integrable, relaxation methods could have
been applied to it on the basis of ‘Rayleigh’s principle’, as in Parts VIIB and VIIC.
From it we have

[ Far e [0, -
2]
f (d¢”) dx" — [2 ”2:1 , when the second of (40) is satisfied,
=) - 00 g () (45)B
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The integral on the left is equivalent to

@EP (@ 5@)2 ,
3202 fo (a’r 75

and the integral on the right of (45) B is equivalent to

2 a _ 2
a th r[(vzw)z__Q(lr o) dw d*w dr,
0

32D dr dr?
so (45) A or B expresses the equality of (decrease in strain energy of thrust) to (in-
crease in strain energy of flexure). The form (45) A is better suited to computation.
Working with the whole range 0<<x”<1 divided into N equal intervals 4, we may
replace dp”/dx”, in the second of (40), and d%p"/dx"?,in (41) and in (45) A, by their finite
difference approximations as under:
d " V4 14 d” " " n" "
2(%s) = s B B(505) = B2t e (40)

X

We may also replace the integrals in (45) A by summations in accordance with Bickley’s
‘N-strip’ formula for numerical integration, or by some other approximate formula
(e.g. Simpson’s rule), or graphically (i.e. by counting squares).

Then, for some assumed mode, we may deduce from (45) A a corresponding ‘Ray-
leigh estimation’ of A, and use this estimate to compute ‘residual forces’ for each point
of subdivision in the range from

Fy = 5 )t g0 Doa= 208+ (8ol (47)

which is consistent with (41) and (46);* keeping A constant we may effect a partial
liquidation of the forces; then we may make a fresh estimate of A from (45) A, and so
on. The whole process has been given in previous papers (Parts VI, VIIB, VIIC).

Here we are concerned only with the gravest (i.e. lowest) critical value of A, which
we term A;. Exact treatment (§16) gives

A, = 1:0609,: (44) bis

proceeding as above (from a starting assumption which satisfied (40) and made ¢”
quadratic in #”) T we obtained the estimates

1-06338, 1-062;, 1-062;, 1-062; (48)

in successive stages. This is satisfactory agreement (the error of the final estimate is
+0-15%,). Table 2 summarizes the computations.

* A different expression holds at the edge (x” = 1), where (¢"),.4, relates to a ‘fictitious point’
and must be adjusted to satisfy the edge condition (40).

1 This assumption gave an analytic expression for A (not depending on approximate integration).
Consequently more significant figures appear in the first of (48).
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A GENERALIZATION OF RAYLEIGH’S PRINCIPLE FOR LARGE DEFLEXIONS

18. Having a close estimate of A, and of'its associated mode (¢7, say), we may proceed
to a corresponding (relaxation) treatment of the large-deflexion equations (39). So
far the absolute magnitude of ¢] has been unrestricted : now, giving it some moderately
large value atx” = 1, we may satisfy the first of (39) and of (40) after replacing d%y”/dx"?,
in the former equation, by its finite-difference approximation in the manner of (46).
The resulting estimate of " can be inserted in the second of (39), from which we then
derive a new estimate of ¢7.

Again the estimate of A, will alter with the form of ¢{, but now (cf. § 15) A must be
expected to rise with increasing amplitude of deflexion, whereas in § 17 it was stationary.
Moreover, in § 17 it was shown that (45) A expresses the constancy, as between the flat
and a nearly flat configuration, of the total strain energy (extensional plus flexural):
now, when A>1,, the total strain energy of the largely bent configuration will be
different from that of the flat, although both will be stationary for small variations.
Accordingly ‘Rayleigh’s principle’, the basis of our treatment in §17, will not (as
normally applied) serve for a treatment of large deflexions. We now consider whether
any modification is feasible.

19. From the second of (39) we have
//2 //2 // 2 n
/lf ¢” dx// _f ¢ ”2 d " f ¢//d %5/2 dx”,

[ ) ()

1/2 dxllz

when the first of (39) is satisfied. Hence, for small variations d¢”, 0y,

”2 n " 8 ” ” ” dz " ” n //d ” n ” n
(mf¢ dx +2Af¢ P g M—f (M ’fzwf d,,zayf +0p d‘fﬁgzs p ¢)d

and the condition for a stationary value of A (namely, dA = 0) can be written as

1 ” /1 ¢// d2¢” , dzzﬁ” , , d , d ¢// , , d , dgﬁ” ,
2 [ (o7 (S ) o0 | [ 8 g0 o0 b =00 |

Jor all permissible variations. ¥

The terms in square brackets cancel at both limits since d¢”, dy", as well as ¢”, y”,
are subject to the boundary conditions (40). If then 0y” and d¢” are treated as indepen-
dent, the conditions for a stationary value of A are

dzgﬁ” 16" dz/// .
=0 Qi + =0 (ii)
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so are quite distinct from (39) unless ¥ is negligible (as is the fact when the deflexions
are infinitesimal) ; and if " and ¢” are related by the first of (39), so that

. 20" .04"
,,2 8¢ 45 ¢ ,,2¢ =0, (iii)
then (i) is equivalent to
1 , /1¢// d2¢ll 2¢Jl¢l/ )
.[0 8¢ ( " +dx//2 xl/z )dx - 0

whence the conditions for a stationary value of A are the first of (39) combined with

241 " " n
ARURTY

& P everywhere. (iv)

Again we have not reproduced both of equations (39).

20. On the other hand, (iv) with the factor 2 on the right-hand side suppressed is
identical with the second of (39), and it would be obtained in that form from (49) if

LAY . i ’
the term ¢ E;% , in the latter equation, were halved. So the wanted function ¢; has

the property that it gives a stationary value for x as deduced from

e[ (e o0

when " and ¢" are related by the first of (39). But A and x as defined by (49) and (50) are
not identical; the relation between them being

2 —u f 0 g — J v dz%d” (51)

when y” and ¢” are related by the first of (39).
With neglect of second-order terms we should have §” = 0, therefore A = y according

to (51). Then (50) is equivalent to

AJ P g — J ¢”d¢f,';d . (45) A bis

which was the equation used in § 17 to determine 4,.

21. Arguing on the lines of Rayleigh’s principle we may say that 4, being stationary
in the required configuration, will be insensitive to small variations of the mode:
therefore to a first approximation we may calculate # (and proceed to deduce A)*
without allowance for the difference between the wanted mode ¢” and the mode (¢}
say) which corresponds with A;. Proceeding on this basis we have approximately, from

(49), / o4
¢1,, d V= JO ‘bl], d%;d ”*f ¢€[,d u;dx”

* This further step, of course, is not strictly warranted by the argument.

Vol. 239. A. 68
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1 being related with ¢ in accordance with the first of (39); and exactly, from (45) A

of §17,
4 lld "
L[ ——[ g Gt

! ” d2¢ Il ¢/1,2 ”
A=12 ""f 7 r/ dx
e / } (52)

~ AN (say),

Therefore approximately

where 4A is a positive quantity proportional to the square of the amplitude of ¢]. In other
words, the relation contemplated in §15 as holding between A, the characteristic
number, and 4, the amplitude of the deflexion, may be expected to have approximately

the form
A= A,+kA?, k being constant and calculable. (53)

Moreover it may be expected that the error of this approximation (as in the usual
statement of Rayleigh’s principle) is on the side of excess, i.e. that A is overestimated
by (53).*

In the present instance ¢{ has been determined in table 2 (§17). Deducing y” from
the first of (39), and defining A as the value of ¢} for x” = 1, we obtained for the constant &
in (53) the value 0-394;. Accordingly our extension of Rayleigh’s principle leads to
the assertion that

A< A +kA? = 1-0625+0-394,42, (54)

22. Having this result we attempted to go further and impose a lower limit on A in
the manner of Southwell 1941, §§518-20. The wanted mode, since it makes x as
deduced from (50) a minimum, must differ from both of the modes which yield
minimum values of #,, 4, as defined by

"2 247 "2 2.
,ulf ¢” dxll — f ¢”d éz dxll, 2ﬂ2f ¢” dxll — f ¢\lld 162 dxll (55>

when y” and ¢” are related by the first of (39). Thereforeif (x,), (#,) denote the minimum
values of g, #,, we have

1> () + (1), (56)

in which (4;) = 1;, as may be seen by comparing the first of (55) with (45) A, which
defined A, in§ 17. Hence, according to (51),

A> A1 42(p,), (57)

where (4,) stands for the minimum value of #, as defined by the second of (55), and
accordingly is proportional to 42.

* This again is not a strict deduction from the argument. It is probable, because we are concerned
with the smallest value of A.
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But this result has no value for the reason that (#,) = 0. In virtue of the first of (39),
the variations of " and ¢” are related by

d2 " 2¢” n
m3¢ + %2 é\¢ = O’
and on that understanding an application of the Calculus of Variations to the second
of (55) shows that when x, has a stationary value then

@"(pyx” —y") = 0, everywhere.

Hence, either ¢” must be zero everywhere (a nugatory result) or d?)” /dx"? must be zero
everywhere, and then g, = 0. Since g, <0 according to the second of (55), this is its
stationary value.

Even if we impose the condition

¢" =1 when z" =1,

we can still make p, zero by assuming that §”ocx” excepting over an infinitesimal range
of x” in the neighbourhood of x” = 1. So (#,) = 0 in (57), which accordingly shows
merely that 1>, this was already evident from (45) A.

23. However, even without the desired lower limit practical value attaches to the
result of §21, since it is obvious that an inequality of the type of (54) can be deduced in relation
to any example of elastic instability, once the critical loading (A,) has been determined, from one
additional calculation which entails no more than the evaluation of a definite integral. Further
computations will of course be necessary when the mode, as well as 4, is wanted with
close accuracy. In that event we may revert to the treatment outlined in § 18, to which
only one remark need be added:—In any stage, given an estimate of ¢” we can deduce
the corresponding estimate of " it will save time if at this point, i.e. before proceeding
to a new estimate of ¢” based on the second of (39), a value of A for insertion in that
equation is deduced from (49).

We start with the advantages, now, of a known upper limit to A and of the knowledge that u 1s
stationary in the required configuration: consequently, if we proceed on the basis of moderate
increments to the value of A4, the range of our explorations will not be wide. Thus when
A is small we shall not be far off the mark if we take ¢} (§21) as our starting approxi-
mation to ¢”, and A as given by the right-hand side of (54). Similarly, having deter-
mined the mode and value of A (¢, and A,, say) which are appropriate to this small value
of A, we can narrow the range of exploration when 4 is doubled; for it is clear from (39)
that the wanted mode will differ from ¢;, and accordingly the wanted value of A4 will
be overestimated if we deduce it from (52) with ¢] replaced by ¢; and ¢ replaced by

" as related with ¢} by the first of (39). Knowing @5 we can impose an upper limit lower than
what is given by (54).

68-2
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Results for large deflexions in Example 2

24. Figure 8 exemplifies these remarks in relation to calculations in which ¢ was
assumed to have the value 0-318 (§16). The critical value of A (corresponding with
A4 = 0) was determined in table 2,§ 17, and the parabolic curve 4 represents the upper

i
Z A8%
m ///

. yas

/ 2.5

-~ FINAL A FOR GIVEN A’

0 1 2 3 4 5

A
Ficure 8. Open circles give results of (F. & S. 1941).

limit fixed by (54) of § 21. Computations summarized in table 3 (and started on the
assumption ¢y_, = ¢/_,: cf. §23) yielded an accepted estimate

Aoy = 1-4025, (58)
and showed that Ay <<1-0680+0-334542, (59)

i.e. that 4 lies below the parabolic curve B of figure 8. When 4 > 1 this gives an upper
limit lower (and therefore closer) than that afforded by curve A. Subsequent and
similar calculations gave the additional parabolas C, D, E of figure 8, based on the
inequalities

(curve C) A,.,< 1‘1194+0-2491A2,]

(curve D) A, < 1-2198+0-190042, ! (60)

(curve E) A,.,< 1-3463—[—0-1518A2.J

25. The convergence of the computations typified by table 3 is indicated by the
numbered points in figure 8. Thus in relation to 4 = 2 we started on the basis of the
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accepted solution for 4 = 0, i.e. with a value of A calculated from the right-hand side
of (54) and so higher than what would be given by the right-hand side of (58). This
overestimate, corrected in the manner of § 18, led to successive estimates which are
numbered 1, 2, 3, 4, 5. The convergence is oscillatory, but the last two estimates are
nearly identical.

Next, on the basis of this solution for A = 2, the case 4 = 4 was started. Curve C was thus
available, and in figure 8 the point for 4 = 4 numbered 1 gives a starting estimate
based on the first of (59). (A closer starting estimate could have been based on curve D
if this had been available.) Again the convergence is oscillatory but rapid. The case
A = 3 was in fact treated last, though it might have preceded the case 4 = 4.

26. Infigure 8 the broken-line curve (‘final A for given 4”) is compared with ‘exact’
results, taken from (F. & S. 1941),* which are shown by open circles. The agreement
throughout-the range (which more than covers all cases having practical reality) is as
close as could be desired.

Table 4 records the co-ordinates of the open circles in figure 8.

TaABLE 4. Resurts oF (F. & S. 1941), IN OUR NOTATIONT

A4 0 0-423 0-646 0-88 1-13 1-39 1-70 2-03 2-64 4-22 4-59
A 1-0609 1-130 1-215 1-34 1-48 1-67 1-89 2:13 2-64 3-99 4-33

RELAXATION METHODS APPLIED TO HARDER EXAMPLES.
(3) AN EXAMPLE OF STATIC EQUILIBRIUM

27. Having established the accuracy of our methods as applied to these two test
examples, we can proceed with some confidence to similar treatment of problems in
which orthodox methods would entail great if not prohibitive labour.

Large deflexions resulting from uniform pressure acting on a rectangular plate with
clamped edges have been studied by Way (1938). His approximate method, which
entails an assumed form of distortion involving eleven parameters, and derives their
values from equations based on energy considerations, has been summarized by Timo-
shenko (1940, § 71). Three forms of rectangle were examined, including the square:
we now treat that case for comparison, first with the admittedly approximate results
of Way, and secondly with the results of a more recent and elaborate study by Levy
(1942). Itis an unfortunate circumstance that ¢ was assumed by Way to have the value
0-3, by Levy the value 0-316 (= ,/0-1).

* Cf. § 14 and footnote.
+ Our A= (F. & S. 1941) «/—(j%lq/LEj % 0-3641. Our A = (F. & S. 1941) 4 x 1-0609.
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The governing equations

28. Here, of the alternative equations (6) and (11), the latter are to be preferred as
making u# and v the unknowns. The stresses in the middle surface are related with u, v,
w by (3) of § 2, whereby for (10) we can substitute the equivalent relation

Z 370%w(du dv 1 /0w\? dw\2)  0%w (dv du 1 /0w\2 dw\?2
4, 4~ o |vwjow OV ow 1 v, ou 1, (%%
Viw=p+p 3x2{3x+03y+ (ax) +2"( )}+ {6y+00x+ ( )“"(w)}

2 oy | oy 210y
Pw (du  dv  Jwiw
+(1—0) 6x6y(@+ﬂ+%3—y)]' (61)
S 04 1—0o, 10 ((0w\? (0w\ 1—0cdwg,
11) bus
4 1—oo, 10 (0w, (w? 1—ocdwg,
ot Votaogllan) +(5y) ey e o
are our gbverning eqﬁations. With Way we shall assume that
l—o 7
g == 0‘3, so that m = 1—:.)‘). (62)
29. Writing &', y' = (%, y)/L, o', v' = (u,v) L/R?, w' =w/h, (63)

where 2/ as before denotes the thickness of the plate and L is some representative dimen-
sion of its plan form, here taken as the length of one side of the square, we shall leave the forms
of (61) and (11) unchanged except that

ZL* ZL*

D 3(1—0?) o (say) replaces Z 3 replaces 3 (64)

D’ h**

Since the alterations required to make the governing equations ‘non-dimensional’
are so slight, we need not actually rewrite these in terms of &', y', u’, v’, w’: instead,
we shall assume in what follows that x, y, u, v, w carry non-dimensional significance. Solutions
must be sought on the basis of particular values assumed for the numerical parameter
a. Each will then apply to a whole family of geometrically similar plates, bent by pres-
sures proportional to AD/L*,

Energy relations

30. Equations (61) and (11), being conditions of equilibrium, could have been
derived by variational methods as conditions for a stationary value of the total potential
energy Y. Modified as in §29, they are conditions which must be satisfied in order that

L2y 1 3 1—0o .
2D "9 f(V2w)2 dxdy+§jf(e§x+e§y+2o‘exxeyy+~7 efy) a’xdy——ajjw dxdy  (65)
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may be stationary for all permissible variations du, dv, dw, when ¢, ¢,,, ¢, have the
expressions (3) in terms of our ‘non-dimensional’ #, » and w. This last assertion is
easily verified,* (11) being derived from (65) by variation of z and v, (61) by variation
of w. On the right of (65), the first term relates to the strain energy of flexure, the
second to the strain energy of extension, and the third to the potential of the (uniform)
applied pressure.

31. Plainly, in Example 3 the equilibrium is stable, so the stationary value of ¥ is
in fact a minimum; and the argument from energy (leading to a treatment entailing
surface integrals) will occasionally be of value, used in conjunction with the normal
technique of liquidation effected on a ‘relaxation net’. For example, having distributions
of u, v, w which constitute an approximation to the correct fype of deflexion, we maywant
to decide their optimal magnitudes. These may be deduced from (65) as follows.

Multiplying the given values of w by £, according to (3) we shall leave the distributions
of e, ¢,,, ¢, unaltered if at the same time we multiply « and v by £2. Thereby we shall
multiply the first integral on the right of (65) by &2, the second by £*, and the third by &:
consequently ¥ so far as it depends on k will be given by an expression of the form

%% — B, KL, — ok, (66)
where I, = —;ff(vzw)z dxdy,
I, = —gfﬂefx +eé2, +20¢,¢,,+ 1—_2:—0 eﬁy} dxdy, (67)
I, = f f wdxdy )

have known (computed) values; so the condition for a stationary value of ¥

(namely %? = O) is
, 2kI,+4k31,—al; = 0, (68)

and from this the wanted value of £ may be determined.
* For example, when u alone is varied in (65), then

L26Y ou l—o ou .

D= 3[[{(%4—07”) 8875+T Cyy 6‘5}} dxdy, according to (3),
=-—3ff¢?u{E (6y+0e, )+L—_gf_e }dxd when du = 0 at the boundar

o T T Ty gy G XD &

For stationary ¥, the cofactor of du in the surface integral must vanish everywhere: hence, substituting
from (3) for e, ..., etc., we obtain the first of (11).
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¢ Optimal synthesis’

32. Or again, having two computed distributions of u, v, w (say, u,, v,, w, and
Ug, Vg, wp) which both satisfy the boundary conditions but which relate to different
values (a,, @z, say) of the loading parameter ¢, we may want to deduce a good starting
assumption for some other value of a.

Let £, be the value of £ (as obtained from (68) of § 31) which corresponds with «
when u, v, w are assumed to have the distributions uy,, v,, w,; and let & relate similarly
to up, vy, wp. Then £ w, and kywy are alternative starting assumptions, of which the
first may be expected to be the closer when « has a value near to a,, the second when
« has a value near to a,; so in general it will be reasonable to assume that w is given by

(ay—ap) w = a(kyw,—kywp) +a,kywp—azk,w,. (69)

Because equations (11) are not linear in w, the corresponding forms of « and v will
not have similar expressions, but must be deduced from those equations (and from w)
by computation ad hoc. Then, having starting assumptions for all of u, v, w, we can
deduce an optimal multiplier £ in the manner of § 31, thus defining completely the
wanted starting assumption. Finally, the residual forces entailed by this assumption
at nodal points can be calculated, and liquidated, on the chosen net.

The finite-difference equations

33. Details of computation are explained most simply by a worked example. First,
in the ‘non-dimensional’ forms of (61) and (11) we substitute their finite-difference
approximations for the integrals, then we solve the equations as thus modified by
techniques which were described in Part VIIA.

The operators involved in (61) and (11) are listed below, with their finite-difference
approximations. The suffix numbering relates to figure 9.

d
Qa(?ﬂ) A W —Ws, Qa(—w) R Wo— Wy,
0 0

0x dy
02 ?w
az(%)o A Wy + Wy — 2w, az(ﬁ_yz)o A Wyt wy— 2w,

(70)

2
4a2( 0 wy) ~w,—w,tw,—-wy, @ (V) ~ w4 wy+ws+w,— 4w,
)

at(Viw)y ~ w+wy + Wi+ Wiy + 2(w, +w, +w,+w,)
—8(w; +wy+wy-+w,) +20w,. )

Making the substitutions, we obtain in place of (61) an equation which may be
written in the abbreviated form

a*[Viw] = ato—+3P(wy, wy, ..., €tc.), (71)

Vol. 239. A. 69
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a*[V*w] denoting the finite-difference approximation to a*V*w as given in (70),
and P(wg, wy, ..., etc.) denoting a* multiplied by the finite-difference approximation,
according to (70), to the expression in square brackets on the right of (61).

~
17
05
=
)

'y

Ficure 9

Outline of the relaxation attack

34. Small values of a will entail small values of w, and for these the term @ (w, w,, ...,
etc.) on the right of (71) can be suppressed. Then we have an equation of ‘ biharmonic’

form, viz. [Viw] = a. (72)
This was solved by methods described in Part VIIA, §§ 17-22, to obtain the mode for
infinitesimal deflexions (figure 10).

Next, equations (11) with these values of w inserted were attacked in the manner of

Part VIIA to obtain a corresponding approximation to « and v, the boundary con-

ditions being u=v =0, along every edge of the square plate. (73)

Both here and in succeeding determinations of u, v and w, the symmetry of the problem
permitted attention to be concentrated on one-eighth of the complete square plate.
An obvious next step was to insert u, v and w as thus computed in the term & (w,, w,, ...,
etc.) on the right of (71), thereby converting that equation to the type of (72); to derive
from it a new approximation to w; then to correct u, v; and so on by an iterative process.
Results so obtained were found, however, to oscillate widely until the device of § 31
was employed to improve the trial solution by means of a calculated multiplier £. Then,

residual forces as computed from* ,
F = ka*[V*w] —ata—3k3F, l
in which # denotes the value of ®(w, w,, ..., etc.) when & = 1, | (74)

* When F is zero everywhere, multiplication of (74) by w, and integration of the resulting equation
over the whole area of the plate, lead (as they should) to (68).
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were left on the whole nearer to zero than before. Relaxing them with a use of the
standard biharmonic ‘pattern’ (i.e. on the basis that w is variable only in the first term
on the right of (74)), we could improve the distribution of w (which is not affected by k)
to form the basis of a new cycle of operations. In this way the iterative process was made
more rapidly convergent.

|

! M ]

51 | 1o

1000 10
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2000 w o] — 106 160 |97

I F N
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: 3000
NG 1559 | 106 0 |98 287 |10
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| Ficure 10. Mode for infinitesimal deflexions.

35. Proceeding in this manner, on a net of mesh-side a = 1 we reached in three
cycles a sufficiently exact solution for the case in which «, as defined in (64), had the
value 4096 (= 8%).

At this point advance was made to a net of mesh-side 5. It is customary in such
advance (Part ITI, §13) to start from interpolated values of w, but here it was found
better to interpolate values of V4w and, after some ‘smoothing’, derive the corresponding
w’s by relaxation with a use of the standard biharmonic ‘ pattern’. The resulting values
of F as given by (74) were small, and a relatively short liquidation process sufficed to
complete the solution for the finer net (figure 11).

36. In the next case studied, « was given a value roughly twice what had been taken
previously, namely, 8736.* Since two solutions were available, viz. (1) the ‘small

* This value was selected arbitrarily. For o = 0-3 it gives a value 400 to the parameter pat|Eh?

of Levy (cf. § 27). ]
9-2
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Ficure 12. Mode for « = 8736. Load per mesh point = 103z%« = 133-3.
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deflexion solution’ of §34 and figure 10, (2) the solution for « = 4096 (figure 11),
it was decided to seek a good starting solution for this new case by ‘optimal synthesis’
(§ 32). Thereafter the operations of § 34 were employed, and three cycles (two on a net
of mesh-side ¢ = %) led to the solution recorded in figure 12.

37. In figures 11 and 12, deflexions are shown to left of the nodal points, and on
their right, in the top line values of a*[ V4w]—the load sustained by the flexural stresses
—and in the bottom line values of the forces left unliquidated (F). To avoid decimals,
all numbers have been multiplied by 1000. Contours of w are drawn in bold lines, and
fine lines give, for comparison, contours for the mode of infinitesimal deflexion (repro-
duced from figure 10). Every contour has symmetry with respect both to medians and
to diagonals of the square plate.

The contours in figure 10 have, of course, only relative significance, since « is there
restricted only by the assumption thatitis small. Consequently only general comparison
can be made between the bold and fine-line contours in figures 11 and 12. But this will
serve to show that the mode alters slowly with increasing pressure; and the point is
made here to controvert a recent suggestion (Dunn 1942) that modal similarity may
be assumed to imply a corresponding similarity in the ratio of flexural and ‘membrane’
resistance. Study of figures 11 and 12 reveals, notwithstanding their similarity in
respect of w, that in figure 12 the flexural stresses attain more than proportionately
large values close to the clamped edge.

38. Figure 13 reveals a satisfactory measure of agreement between our results and
those of Way and Levy, over a range of loading more than sufficient to cover practical

20 = ="
%/
/;t/
--®
]
5 N
5 a\ i
4
:.- N /‘/
o
S v
il.w Y
10 N v
< P
Wah ,3/ /
A
v ./
/
*
os|__/]
/o
—e
o ‘ 10,000 12,000
) 2000 4000 6000 8000 ) ,
o

Ficure 13. @ Levy, o= 0-316;+ Way, 0 =0-300; ® R.M., 0 =0-300 (left), o = 0-316 (right).

cases. In our computations, variation of ¢ between 0-3 and 0-316 (§ 27) had little effect,
the lower value entailing a slightly larger deflexion. This is contrary to what would be
concluded from a comparison of Way’s results with Levy’s; but it seems unlikely that
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all of the difference between their results can be explained by their assumption of
different values for o.

RELAXATION METHODS APPLIED TO HARDER EXAMPLES.

(4) AN EXAMPLE OF ELASTIC STABILITY

39. As a harder example of the type of Example 2 (§§14-26) we take the case of a
square plate which buckles under shearing actions applied to bars whereby every
edge is clamped and compelled to move as a rigid body. The critical loading (corre-
sponding with infinitesimal deflexions) has been calculated by Iguchi (1938). We begin
by computing this quantity on the basis of relaxation methods (cf. §17).

The governing equation is (12) of § 5, with

P, =P =0, S=const. =S, (say), (75)
. 0w
4yy_og W
Le. it is DV4w—28, axdy 0, (76)

S, being the critical value of S. Multiplying through by w, then integrating over the
whole plate with use of the boundary conditions

ow

W= =0, (77)

we obtain the relation

2
D[(veu)avay = QScffw;%%dxdy, | (78)

which may be used in accordance with Rayleigh’s principle to determine S,.

Energy aspects of the equation governing small deflexions

40. Equation (78) can be interpreted in terms of energy. I; and I, as defined by

I, — %fo(VQw)dedy (= %—fowV‘*w dxdy), ]
L (79)
2 1—
I, = g2 ff{eﬁx +e2,+20¢,.¢,,+ —EE efy} dx a’y,}[

measure, respectively, the total strain energies of flexure and of extension, when ¢,

¢,,» ¢, stand for the fofal extensional strains. When, on the other hand, ¢, ¢,,, ¢,, stand
for additional strains superposed on a uniform initial shear strain given by
e, = S/2uh = (1+0)S/Eh, (80)
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then in the expression for the strain energy of extension we must replace ¢,, by (e,, +e¢,,),
thus obtaining a new expression in place of I,, viz.

Iy = 2+1;—0}?E fdxdy+Sffexydxdy, (81)

in which J, has its expression (79). Now clearly, in (81),

140 S2
T/Eﬂdxdy: U, (82)

—the total strain energy in the flat configuration of uniform shear strain; so the total
strain energy (of both kinds) in a configuration defined by additional displacements
u, v, w is given by

U—1I— II+IZ+UO+Sffexydxdy.

That is to say (since no work is done by the external forces of additional displacements
which vanish at the boundary), the gain in total potential energy (of the bent as distinct
from the flat configuration) is

Y (say) = U—Uy= I +1,+S .1, (83)
where

ow dw .
1 —ff dxdy = ff(0y+8x+0x 5y> dxdy, according to (3),

f f dw aw dxdy, sinceu = v = 0 on the boundary,

~~wa%:(%a’xa’y. | | (84)

41. When w is infinitesimal, # and v as determined from (11) are infinitesimals of
the second order; therefore, if we neglect terms of higher order in w than the second,
I, = 0 in (83) and equation (78), § 39, is equivalent to the statement that

Y=0, when S=S. (85)

In other words, when the critical loading is attained, not only has the total potential energy P
a stationary value in the flat configuration, but that value is not altered as a result of small
displacements of the wanted type. This (cf. Southwell 1941, §492) amounts to the
assertion that the stability of the flat configuration is neutral.

Rayleigh’s principle makes the further assertion that S, as deduced from (78) has
a stationary value in the wanted mode: i.e. that

3, +S,. 8, =0 (86)
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for all permissible variations dw* from this mode. It can be used to establish the
governing equation (76): for since

51, — D”vzw V2w drdy — foaw. Véwdxdy, in virtue of (77),

. 8 w
and since fﬂé‘wa 8y 8 p )dxdy

—zﬂawﬂ dxdy, in virtue of (77)
= dxdy ’
equation (86) requires that
2
f f dw (DV‘!w—-QSc %) dxdy = 0 for all permissible variations dw,

therefore (76) is satisfied.

Energy aspects of the large-deflexion equations

42. When the distortion is considerable, 7, can no longer be neglected in (83), and
we must expect that S will exceed S, ; consequently we can no longer expect ¥ to vanish
asin (85), but on the other hand it must still (by a general theorem in Mechanics) have
a stationary value in the wanted (equilibrium) configuration. That is to say, we may
expect to obtain the governing equations as conditions which must be satisfied in

order that
8Y = 0, +0L,+S .0, =0 (87)

for all permissible variations du, dv, dw.
Both of these anticipations are realized. For on varying « we find that

—2hE 1— 8
ol, = 1—g? ff&‘ { xx+o‘eyy)+ 5 0 }dxdy,
as in the footnote to § 30, while 0/, = 85 = 0: consequently (87) leads to the first of (11).
On varying v we arrive, similarly, at the second of (11) ; and on varying w (which enters
into all of 1, I,, I) we arrive at

(?w 2hE l1—o Jw
4y o
DViw =285 G ti= [8x{ Cut00,) et g xyaﬂ
d dw l1—o Jw
+(§§ <(eyy + ‘Texx) 3—!/ + ) €y 9‘;}] (88)

which is the form assumed in this example by (15) of § 6, the last of the governing
equations.

* Neither ; nor I; varies with u or v.
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But 540 when the governing equations are satisfied. For on multiplying (88)
throughout by }w, then integrating over the whole plate with use of the boundary
conditions (77) and of the three governing equations, we find that

L2081, = 0,)

whence, and by (83), we have (89)

Yyl —o0. |

I, being necessarily positive, ¥ according to (89) is negative: that is to say, the total
potential energy is less in the wanted configuration than it is so long as the plate, loaded
by a shearing action S in excess of S,, remains flat. This result too was to be expected

(cf. § 18).

43. We have seen that the governing equations, and hence the wanted (equilibrium)
configuration, can be deduced from (87), which in §42 was obtained from a general
theorem in Mechanics. But (87) also expresses the statement that S as deduced from

I +1,+SI, =0, (90)

is stationary for all permissible variations; so the wanted configuration can be deduced from a
principle akin to Rayleigh’s.

It is not the fact that satisfaction of the governing equations implies the satisfaction
of (90),—i.e., according to (83), the evanescence of ¥: we have seen that <0 in
the wanted configuration. This circumstance, however, does not invalidate the use in
computation of the principle stated in italics. Exactly similar conclusions were reached
(§ 20) in relation to Example 2

44. Following our treatment of that example, we may say that in the wanted

configuration x as deduced from
I+ I+ply =0 (91)

is stationary, and that S = u—1L/I, ' (92)

this last equation being a consequence of (91) and the first of (89). Equation (50),
§ 20, assumes the form (91), and equation (51) the form (92), when S is substituted
for A and

@, 1 hEe (e dwd
I, forJgﬁ b dd’ = 55 | g Y,
Ly, B dyd o,
12for§J0;ﬁ L ARG AR
1472
I forJ. é*a’x” —ﬁl—? (dw) dr;
0 X dr

and it is easy to verify that on this understanding, and when multiplied by — 327 D?/hEa?,
I, denotes the total strain energy of flexure, I, the total strain energy of extension corre-

Vol. 239. A. 70
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572 J. R. GREEN AND R. V. SOUTHWELL ON RELAXATION

sponding with y (§14), A/; the change in extensional strain energy which results from
P—a quantity of the type of the term S ffexy dxdy in (81). Consequently our treatment
of Example 2 is basically identical with what has been given here.

45. Asing§ 21, arguing on the lines of Rayleigh’s principle we may say that g, being
stationary in the required configuration, will be insensitive to small variations of the
mode. Therefore to a first approximation we may calculate # (and proceed to deduce S)
without allowance for differences between the wanted mode w and a mode already
determined (w,, say) which corresponds with some other value of S.

¢ Non-dimensional’ approximations in finite differences

46. Computations must of necessity be performed on the basis of finite-difference
approximations to the governing equations, and in ‘non-dimensional’ variables.
Substituting from (63), § 29, we have in place of (76)

02w

4 —
Vi — 2/168 = =0, (76) A
and in place of (88)

dw 1— dw

4 s

Viw — 2/1 3[6 {(exx—{—a )(?x+ 2 Cyy (?y}

J w  1— dw

+(?y{( eyt 0e,) 3Z/+ 2 exym}] =0, (88) A

to be used in conjunction with the relations (3), §2, u, v, w, x and y now having non-
dimensional significance, and A being a numerical ‘loading parameter’ defined by

A =SID. (93)

These are our non-dimensional governing equations, and the energy relations of
§§40-45 must be modified in accordance. I, I, as defined in (79) are dimensional
quantities obtained by application of a multiplying factor /2D/L? to I}, I, as defined by
(67) with non-dimensional significance for u, v, w, x and y; and the dimensional quantity

2
sﬂ@w@zégm

when a like significance is attached to all the symbols in (84). Consequently (83) can
be replaced by

L2Y/h2D = I, + 1, + 1, (83) A

when I}, I,, I, have non-dimensional significance; (85) and (86) by
Y=1+A1;=0 (85) A
and by 01, + A1, = o, (86) A
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respectively; and (87) by
81, + 01,41 .81, = 0, (87) A

which leads to (88) A in the same way that (87), § 42, led to (88). Finally, the first of

(89), § 42, can be replaced by
I +21,+ A1, = 0, (89) A

and the conclusion of § 44 may be restated by saying that in the wanted configuration

4 as deduced from
L+ 1, +uply; =0 (91) bis

is stationary, and that A=pu—1LJI, (90) A

when non-dimensional significance is attached to u, v, w, x and y in calculating I,, I,, I,. The
practical deduction is as stated in § 45, with A substituted for S.

47. The finite-difference approximations (70), § 33, employed as before, lead to the
replacement of (76) A, § 46, by

F, = a}[Viw] —§a®A (w, —w,+w,—w,), (94)
and of (88) A, §46, by

F, = a*[V*uw] —1a?A(w, —w,+w,—w,) — 3P (wy, wy, ..., etc.), (95)

& having the same significance as in § 33, and F as before denoting the residual force
at 0. The derivation of ‘relaxation patterns’ from a given expression for F, has been
explained in earlier papers of this series, so needs no description here.

The integrations required in an energy treatment (§§40-45) are replaced, corre-
spondingly, by summations in accordance with approximate formulas. It was remarked
in Part VIIC (§9) that ‘Simpson’s rule’ will often give results as good, or better, than
those deduced by more elaborate treatment: here we observe that when the integrand
has both zero value and zero gradient at either end of its range, still better results may
come from simple summation.

48. Let0,1,2,...,2N—1, 2N be points of subdivision in the range 4B, figure 14,
and suppose the integrand y, of which both the value and the slope is zero at A and B, to be
extrapolated ‘by reflexion’ to fictitious points C and D, just outside the range. Then
by hypothesis v '

| Y4=Y5=0s Yo=Y Yp="Yoy-1; (1)

so of the two areas shaded, by Simpson’s rule,
1 1
6 [ ydr—=3] ydx—hlye+ay,+p) = 209,
4 c '

B i (ii)
and 6 ydx (similarly) = 2hy,y_,,
2N~1

where 2Nk = total range AB. )

70-2
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Hence, applying Simpson’s rule in the range 1— (2N —1), we have
B e
3fAydx =20{y; +ys+... F Yoy 1 H 20 Yt Yoy o)) (ii1)
and direct application of the rule in the range 4B gives
B .
3fAya'x = 20{ys st F Yoy 2200 FYst Yy )] (iv)
since y, = y, = 0. Adding equations (iii) and (iv) we have
B B
fAydx:h(yl‘l‘y2+--~+y2N—2+y2N—1> :/l%(y), (96)

—again, because y, = y, = 0.

f=h
¢
7] T2

A

/0

|
VE )

2Nh

Ficure 14

Outline of the relaxation attack

49. To solve (94), the equation governing infinitesimal deflexions, a mode was
guessed and a corresponding estimate of A deduced from (85) A, §46; then, for that
value of A, residuals were deduced from (94) and liquidated
with use of a relatively simple ‘pattern’. This (figure 15) was
deduced from (94) after giving A a value correct to 2 figures.
Greater accuracy would have entailed more labour, without
compensating advantages. I le o s

A new estimate of A could now be deduced from (85) A, ]

3

56 -8 0-4

—,—

and the foregoing operations repeated. Six cycles of this ot g8 3¢
iterative process gave figure 16 as the mode for infinitesimal .
deflexions, and o

A, = 150 (97) Ficure 15

as the wanted (critical) value of the ‘loading parameter’ (§46).

50. Figure 16 was made the starting assumption of an attack on the large-deflexion
equations for (Case 1) a central deflexion equal to the plate thickness 2h,—i.e., in the
‘non-dimensional’ notation of (63), § 29, for a central deflexion w, having the value 2.
A having been estimated from (89) A, § 46, residuals were calculated from (95) and
relaxed (almost completely) with a use of the standard ‘biharmonic pattern’ (cf. § 34);
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then, the resulting deflexions were multiplied so as to restore w, to its fixed value. In
this way, starting from the mode of figure 16 (w,, say), we arrived at a new mode
termed w,.

\ mcana—— —— e P B ——— D e
| /
[
58|24 =jod-2§1 -59|-592 ! 7 |-553  200|:
\" -9 o / 2
’ )
, /)
/
/
£550 ;6: -63. 40440 58
/ 3
,e(s«s\o
[
/ I
00| 892
N

]

Ficure 16. Mode for infinitesimal deflexions.

Next, with w, as starting assumption the whole process was repeated to give anew mode
w, (say) ; then, the device of § 13 was employed to deduce a still closer approximation w.
That is to say, for every nodal point a diagram of the type of figure 5 was constructed,
P, and P, now having the co-ordinates (w,, w,) and (w;, w,), and @ giving by its (equal)
co-ordinates a corresponding value for wy. It was found that the residuals given by w;
were much smaller than the initial values taken from w,: they were relaxed with patterns
deduced from (94)—i.e. with neglect of &(w,, w,, ..., etc.) in (95)—but for a A-value
(196) computed from the large-deflexion relation (89) A, § 46.

Our purpose in thus using inexact ‘relaxation patterns’ was, of course, to avoid the
complexity of a special pattern for every nodal point: those which we used were all
of the type of figure 15, and differed only in that different numbers replaced the four
there shown as 0-4 and 3-6. Notwithstanding this inexactitude of the relaxation process,
continued improvement of the mode resulted because, at the start of every new cycle
of operations, residuals were calculated exactly from (95). The accuracy of the final result
(figure 17) is of course verifiable.

51. In Case 2, w, was given the value 4 (central deflexion = twice plate-thickness).
As a starting assumption, all deflexions were assumed to vary linearly with w, in the
range 0<w,<4, so that

(@) =4 = 2(0) =2 = (@) =05 (98)
and the quantities on the right of (98) were taken from the previous solutions of §§ 49
and 50. The mode thus found was improved by relaxation effected with simplified
patterns (cf. §50).
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Five cycles of such operations led to a solution deemed sufficiently exact (figure 18)
and to a value 334 for A. The results of §§49-51 are summarized in the table which
follows:

TABLE 5
1y — central deflexion 0 1 2
#7¢ ™ plate thickness
A 150 196 334
V4 150 174 248
PSS ., JS——— - —e

AN . /
. /7 ‘
-56\| 192 -7 =209~ <86 | -686 / /50| -716  207|= TSE~ust Ldso

B -9 6 6 -4 8

~148 /808

1000.

[ [ — _<______/

Ficure 17. Case 1.

AN — —— —_— —_—
I~
\ / /

* 49348 _-pae PR

\
t

4
“modw755 / 12,1028 212

2,' o) 7 14
N 4
4
4
5
/
7
v

A /
, 7 53

Ficure 18. Case 2.
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52. Figure 19, constructed from this table, serves to confirm the argument of § 45.
The bold-line curve for 4 is a parabola passing through the critical value A, = 150, and
deduced from (89) A, §46, on the assumption that w has the distribution found in § 49
(figure 16). For w, == 2 (Case 1) the points numbered 1-4 record values of 1 computed
in successive cycles (§50). From the point 4 another parabola (shown in fine line)
records the predictions drawn from (89) A, again on the assumption that the distribu-
tion is unchanged.

400,

300 /

200 !_:: - <=7
1 ;;S”‘
=
Asp -
100
(o]
o 1 2 d 4 S

= SEMTRAL DEFLEXION
wc PLATE THICKNESS

x2

Ficure 19

The broken-line curves for x serve to illustrate the point that g, in virtue of its
stationary property (§45), is even more closely predicted by (91) than A by (89) A, § 46.
The bold-line parabola, passing through the critical value 4 = 150, gives within an
accuracy of some 4 9, both of the finally accepted values (shown by black dots).

CONCLUSION

53. Except in specially simple cases, the ‘large-deflexion equations’ of von Kdrméan
(§2) have so far been found to present insuperable difficulties to orthodox analysis:
treated by Relaxation Methods, they appear from this investigation to entail nothing
worse than very considerable labour.

Our extension of Rayleigh’s principle (§§18-22 and 42-5) provides a treatment
likely to have considerable value in design. Just as, in such problems of elastic stability
as the strength of struts, estimates of critical loadings are wanted but need not be exact,
so in cases of ‘well-developed buckling’ (entailing ‘tension fields’ of the kind first
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brought to notice by Wagner) it will be important to have some early notion of the
rate at which resistance is recovered as the deflexions increase.
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